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Anisotropic  Temperature Factors  and Screw Rotat ion  Coefficients 
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BY G. S. PAWLEY 
Department of  Natural Philosophy, Edinburgh University, Drummond Street, Edinburgh 8, Scotland 
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It is shown how the correct tensors for the description of the rigid-body motion of molecules in crystals 
can be obtained from a lattice dynamical calculation. This helps in understanding the tensor S intro- 
duced in the paper by Schomaker & Trueblood (Acta Cryst. (1968). B24, 63). An expression for 
the anisotropic temperature factors including the tensor S is obtained. The form of this expression 
is convenient for use in a least-squares structure refinement procedure. 

Recent work on the lattice dynamics of naphthalene 
and anthracene has yielded calculated values for the 
mean-square translational and rotational tensors, T 
and co (Pawley, 1967). It is easy to generalize the pro- 
cedure for all crystals comprising rigid molecules to 
give the screw rotation matrix S introduced by Scho- 
maker in 1964 (Schomaker & Trueblood, 1968). S is 
shown to be zero when the molecules are sited on sym- 
metry centres, and this can be understood from lattice 
dynamics because the translational and rotational com- 
ponents of a lattice mode eigenvector must be n/2 out 
of phase (Cochran & Pawley, 1964). 

When there is no centre of symmetry the dynamical 
matrix is Hermitian, giving complex eigenvectors. We 
may write a general eigenvector in an orthogonal co- 
ordinate system as 

]/2 (Ul, U2, U3, iv1, iv2, iv3, 01, 02, 03, igx, @2, i~03) 

o r  

]/2 (u, iv,0, ito). (1) 

The motion of an atom at x in a molecule in this 
mode is 

1/2(u + 0 x x) cos cot + 1/2(v + to x x) sin cot 

which should serve to explain the symbols, co being the 
eigenfrequency. The mean square displacement of this 
atom is then 

(u + 0 x x)2 + (v + to x x)2. (2) 
As the two terms of this expression are similar, we will 
omit the second until equations (4). 

It is customary to give the tensor Ux for the atom 
at x, which gives the mean square displacement in the 
direction of the unit vector 1 as Z (Uz)tjl, ll. It is well 

i7 

known that for a general vector y, the matrix Y with 
coefficients Y,j =y, yj behaves as a second order tensor, 

Y, flll 1 being the square of the projection of y along I. 
/i 

Clearly then we can write 

(Ux)lj= 2 : ( u + 0  x x)~(u+0 x x)j 
modes 

for u + 0 x x is simply a displacement vector. 

Expanding this for typical components we get 

( U z ) l l  = ~. (Ul +O2x3--O3x2) 2 
modes 

= T l l  + 2 2 __ 2co23XEX 3 + 2Szlxa O.)22X 3 -I- (.033X 2 

- -  2 S 3 1 x 2  

( Ux)23 : ~r. ( u  2 -Jr- 03x 1 -- OlX3)(u 3 21- O1x 2 -- 0 2 X l )  
modes 

= T23 n t- co31XlX2 -t- co12x3x1 - -  (.023 x 2  - -  (J)l 1x3x2 

"~- 8 3 3 x  1 - -  81323  -t- S l z X  2 - 8 2 2 x  1 , (3) 

where we have defined 
Tlj = X (muj + v~vj) 

modes 

coi~ = X (0~0j + rp~0j) (4) 
m o d e s  

S~j = Z (Owj + ~o~v~). 
m o d e s  

It may be obvious that these are tensors, but this 
can be shown as follows. Consider 

where 
Ux = T + VxcoVx- V z S -  gV-z, (5) 

(0 ) - -  X 2 

Vx= x3 0 - 1 
- -  X 2 X1 

is a second order antisymmetric tensor. Writing this 
out in full gives exactly equation (3). Now as Ux must 
transform as a second order tensor so must the right 
side of equation (4), and this is clearly consistent with 
T, to and S transforming as second order tensors. Scru- 
tiny of the terms in equation (3) shows that S is defined 
in agreement with Schomaker & Trueblood, and these 
authors show that the trace of S is indeterminate. This 
can be seen by factorizing two elements of the second 
equation, giving ( $ 3 3 -  $ 2 2 ) x  1. The diagonal elements of 
S always appear in this combined form and therefore 
individual estimates by X-ray methods are not pos- 
sible. 

It has been shown that the inclusion of T and 
in the least-squares structures refinement using X-ray 
data vastly decreases computer time and has always re- 
sulted in a closer fit with experiment than the usual 
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least-squares process (Pawley, 1966). The method has 
been described by Pawley (1964) whose equation (1) 
uses the term T + VxcoVx in the anisotropic temperature 
factor exponential. To generalize to include S one 
needs to replace this by the present equation (5), and 
the extra partial differentials needed are straightfor- 
ward. In searching for the effects of S this method is 
clearly superior to the analysis of individual atomic 
anisotropic temperature factors obtained by the usual 
process. 

To calculate T, co and S from a lattice dynamical 
model requires the description of the atoms of a mol- 
ecule in a suitable coordinate system. The inertia axes 
are the obvious choice, and it is hoped that published 
results of T, co and S will be in this coordinate system. 
Schomaker & Trueblood suggest transformation to co- 
ordinates where the average motion corresponds to six 
independent simple motions, but in view of the mul- 
titude of vibrational modes present this transformation 
cannot be regarded as physically meaningful or useful. 

Finally let us investigate the symmetry properties of 
S. In discussing the transformation properties of equa- 
tion (5) it was tacitly assumed that we were dealing 
with proper rotations. The symmetry restrictions im- 
posed on T, co and S by proper rotations are identical 
and well known. Schomaker & Trueblood give all the 

restrictions imposed also by improper rotations, so one 
example here will suffice. Consider a crystal whose 
molecules lie on a plane of symmetry perpendicular 
to z. Then if (1) is an eigenvector, then so is 

1/2 (Ux, $/2, - $/3, iv1, iv2, - i v 3 ,  

- -  01 ,  - -  02 ,  03,  - -  i~01, - -  i~02, i(P3) • 

Here the infinitesimal rotations 0 and q) transform as 
the small displacements u and v except for a sign 
change. Equation (4) then shows that of S only $13, 
$23,$31,$32 are non-zero, exactly those components 
which are zero in T and co. Thus for any symmetry 
we can obtain the restrictions on T, co and S simply 
by writing down the components of symmetry related 
eigenvectors and performing the summations of equa- 
tion (4). The rules soon become obvious and the results 
agree with the tabulation of Schomaker & Trueblood. 
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Caract~res Structuraux des Diacides Aliphatiques Satur6s h Nombre 
Impair de Carbones, COOH[CH2]2n+ 1COOH 
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(Regu le 21 juillet 1967) 

The structure of the a form of brassylic acid, COOH[CH211xCOOH, has been determined. Comparison 
between structures of four dicarboxylic acids (a forms) with odd numbers of carbon atoms shows 
the constancy of molecular configuration, in particular of the carboxylic groups and hydrogen bonds, 
and the characteristic form of the molecular assemblage. 

I n t r o d u c t i o n  

Les diacides impairs, ~t partir de l'acide glutarique sont 
connus sous deux formes: a (P21/c) et fl (C2/c). La 
forme a est stable ~t basse temp6rature (Dupr6 La Tour, 
1932). 

L'acide brassylique a (C13) est le dernier corps de la 
s6rie des dioiques h nombre impair de carbones dont 
nous avons pu obtenir des cristaux et d6terminer la 
structure. 

Nous avons d6jb. montr6 pour les acides pim61ique 
(C7), az61aique (C9) et und6canedioique (Cll) que la 
mol6cule est allong6e suivant l'axe Oz et que la valeur 
du param&re c de la maille monoclinique est directe- 
ment li6e/t la longueur de la chaine carbon6e. En 6ten- 
dant ces remarques ~ l'acide brassylique et par analyse 
directe des projections de la fonction de Patterson nous 
avons pu d6terminer cette structure. Nous nous borne- 
rons dans une premiere partie b. donner les r6sultats 
cristallographiques, apr6s l'affinement (R=0,088).  


